哲数物を学ぶ

本の感想が主,サブカルにも触れる

複素数z=x+iyと外積の性質を用いて二重積分 ∫dxdy を ∫dzdz* と表示する.

多重積分に現れる微小要素dxdyというのは外積として定義する考え方がある.

つまり dxdy は詳しくは dx\wedge dy という外積の記号が省略されている.

 2変数関数 f(x,y)積分複素数 z とその複素共役 z^* を用いた関数 f(z,z^*)積分に変換するときはその微小要素の変換は以下のようになる. 

{\begin{equation}dz\wedge dz^*=(dx+idy)\wedge (dx-idy)\\=dx\wedge dx-idx\wedge dy+idy\wedge dx+dy\wedge dy\\ =-idx\wedge dy-idx\wedge dy\\=-2idx\wedge dy\end{equation}}